
Viktor K. Decyk

UCLA

Strong Scaling Studies with UPIC

UPIC Framework
Framework: a unified environment containing all components
needed for writing code for a specific problem domain

Goal is rapid construction of new PIC codes by reusing tested
modules: “Lego” pieces for developing new codes

Designed to support different programming styles
• Simple Fortran77 projects
• Complex, object-oriented, multi-author projects
• Student programmers, with many error checks

Supports multiple numerical methods, optimizations,
different physics models, different types of hardware

Above all, hides parallel processing

Codes using UPIC Framework

QuickPIC: Quasi-static code for plasma based accelerators
QPIC: Quantum PIC code
Parallel DRACO: 3D code for modeling ion propulsion.
RECON3D: 3D EM code for studying magnetic reconnection
BEPS: UPIC Test code

Benchmarks Parameters
Benchmarks on Atlas, an AMD 2.4 GHz Opteron Cluster at
LLNL, Infiniband Network, 9216 Cpus.

Small, Medium, Large, and Extra-Large Strong Scaling Studies
(Fixed problem size) for 3400 time steps

3D Electromagnetic, Relativistic Code, Linear Interpolation.
Uniform Plasma, 2D Partition. Most results double precision

Periodic Spectral Code, 10 FFTs per time step

Purpose: to identity where current algorithms break down

Small

2 3 4 5 6 7 8
1.0

1.5

2.0

2.5

3.0

3.5

log2 procs

Log Time vs log2 procs

Total

Particle
FFT

Solid line shows linear speedup

3D EM Code, relativistic
7,962,624 particles
64x32x128 grids
30 particles/cell

Measurements of Particle Push includes:
•Charge and Current Deposit
•Particle Acceleration and Sorting
•Particle Manager

Large

7 8 9 10 11 12 13
2.0

2.5

3.0

3.5

4.0

4.5

log2 procs

Log Time vs log2 procs

3D EM Code, relativistic
1,064,096,000 particles
512x256x512 grids
16 particles/cell

Total

Particle
FFT

Solid line shows linear speedup

Procs Push Time FFT Time Loop Time

8192 proc: 53 psec. 199.2 sec. 421.9 sec.
4096 proc: 108 psec. 203.2 sec. 630.0 sec.
2048 proc: 204 psec. 342.5 sec. 1140.1 sec.
1024 proc: 401 psec. 625.8 sec. 2164.8 sec.
512 proc: 794 psec. 1003.6 sec. 4023.1 sec.
256 proc: 1.6 ns. 2174.9 sec. 8137.0 sec.
128 proc: 3.1 ns. 3698.6 sec. 15587.7 sec.

Particle Push scales very well in all cases (better than 90%)

Particle Manager takes about 25% of the time, but scales
• Checking which particles to move takes as much time as
moving them

Most of the FFT time (75%) is spent doing transpose
• Eventually message size in transpose becomes small and
latency dominated
•For vector data, transposes for each component combined

Observations

Double Precision FFT Benchmark

Procs FFT Time

4096 proc: 0.74 sec.
2048 proc: 1.74 sec.
1024 proc: 3.36 sec.
512 proc: 7.79 sec.
256 proc: 15.02 sec.

2048x2048x2048 real to complex UPIC FFT on Atlas

Procs FFT Time

4096 proc: 5.6 sec.
2048 proc: 9.2 sec.
1024 proc: 15.9 sec.
512 proc: 26.2 sec.
256 proc: 43.3 sec.

2048x2048x2048 complex to complex Steve Plimpton’s FFT
on Franklin

Transpose Routines
Many algorithms can be parallelized by operating on one co-
ordinate which is local (not distributed), then transposing and
operating on the other coordinate, which is now local

FFT can be parallelized this way
Also, mixed spectral and finite-difference methods

Limitations
• Cannot use more processors than grids
• Assumes domains are regular

Transpose is very communication intensive, all-to-all

Collision avoidance important for some hardware

At any given pass, each process sends and receives to
unique processor. Pause at each pass before continuing.

Ordered vs. Asynchronous Transpose on
Commodity Switches

Ordered vs. Asynchronous Transpose on High
Performance Computers

0 5 10 15 20
0

50

100

150

200

250

log2 Message Size (words)

Bandwidth versus Message Size

8 Simultaneous Message Pairs
Between 2 Nodes

Measured Bandwidth for one message pair between
physical nodes while multiple messages are being
sent. Measured latency time is 8 microseconds.
Half maximum is achieved for messages of about 512
words (2 KBytes). Note glitch at 4096 words (16
KBytes).

Bandwidth Test on Atlas

Message size in FFT:
NX*NY*NZ/nproc^2

2D Domain decomposition

Each partition has equal number of particles

1D Domain decomposition

•

• •

••

•
•
•

••

•
•

• •

•

•

• •

•
•

•

•
•

•

•
•• ••

•

• •
••

•
•

• •

• •

•

•

• •
••

••

•
•

• ••

•

• ••
•
••

• •

• •

•

•

••• •
••

• ••
•• •

• •
• •
••

• •
•

• •

•

• •

• ••
• •

Partition Manager
Moves data between non-uniform and uniform partitions

Fields which do not belong, passed to appropriate neighbor,
then passed again if necessary. Remembers how many passes
are required.

Finds new partitions based on number of particles per cell,
accurate to nearest cell. Can also find new partitions from
known distribution.

Partition manager is called every time step, since fields needed
by particles are in non-uniform partitions, but FFT based solvers
require uniform partitions.

Dynamic load balancing: changing partitions

Future Architectures
Will multicore processors change our strategy?

